NSF INCLUDES: STEM Core Initiative

October 1st, 2016 - September 30th, 2018 | PROJECT

Demand for skilled workers in STEM industries is continuing to grow rapidly across the United States. At the same time, postsecondary completion rates in fields such as computer science and engineering lag far behind demand. Academically, calculus is the critical barrier to entry to high-growth, high-wage STEM careers for the 59% of community college students who enter at remedial math levels, greatly diminishing the candidate pool for careers in STEM disciplines. In California, for example, only 4% of community college students advance to calculus in 4 years and therefore never have a chance to begin to train for the STEM careers that dominate the state's economic landscape. This barrier diminishes the candidate pool for STEM careers falling disproportionately on two groups: (1) minority students who are overrepresented in remedial programs; and (2) female students who are underrepresented in higher-level math courses. To broaden participation and expand the pipeline of available STEM talent, the STEM Core Initiative (SCI) implements a model that includes an accelerated and contextualized math course sequence with intensive supportive services designed to serve underrepresented students. The cohort-based program moves students from intermediate algebra to calculus-readiness in two semesters (as opposed to two or more years). A prototype of the SCI model has been implemented at four colleges over the last three years and has resulted in a 20-30 percent increase in math course success rates for participants compared to students enrolled in a traditional math course track. The partnership replicates and scales SCI successes through an enhanced STEM Core pathway model to be implemented at 13 California community colleges and one large and diverse Maryland community college campus, directly serving more than 625 students. Further, as a workforce development program, SCI offers paid internships with leading national and regional employers in computer science and engineering and exposes students to high-growth, high-wage STEM career opportunities.

The one-year calculus-readiness and internship pathway for remedial students is a new approach in eleven of the partner colleges and utilizes a collective impact approach to align industry and workforce development partners. The partnership offers wrap around student support, accelerated and contextualized learning, and expanded high-quality work-based learning experiences including internships. Well-positioned employer partners (such as NASA and the federal energy labs) contribute to the development of a national strategy by assisting community colleges with course contextualization, providing career orientation, and hosting project-based internships. To advance research, SCI employs a comprehensive multiple methods plan to assess the effectiveness of the STEM Core intervention and identify and understand the effective practices that underpin successful implementation of the STEM Core at 14 community colleges in California and Maryland. The evaluation seeks to measure and understand the impacts of STEM Core on student learning, academic and industry engagement, academic momentum, math confidence, and commitment to STEM as well as an understanding of implementation and replication strategies that yield the greatest impact. National dissemination of the results showcase the successes of STEM Core and build capacity to replicate the model.

Project Website(s)

(no project website provided)

Team Members

Jim Zoval, Principal Investigator, Saddleback College
Frank Gonzalez, Co-Principal Investigator
Mark Eagan, Co-Principal Investigator
Courtney Brown, Co-Principal Investigator
Michael Venn, Co-Principal Investigator
Jim Zoval, Co-Principal Investigator

Funders

Funding Source: NSF
Funding Program: NSF INCLUDES
Award Number: 1649381
Funding Amount: $299,981.00

Tags

Access and Inclusion: Ethnic | Racial | Women and Girls
Audience: Undergraduate | Graduate Students
Discipline: Mathematics
Resource Type: Project Descriptions
Environment Type: Higher Education Programs | Informal | Formal Connections