# 2012

Waldron Educational Consulting

Anna M. Waldron, Ph.D.

SUMMATIVE REPORT FOR THE NANOOZE PROJECT

This report is intended to inform the project PI, Dr. Carl Batt, and the National Science Foundation of the impacts of this NSF-funded project. The exhibit was evaluated at INNOVENTIONS at *Epcot*® in Lake Buena Vista, Florida.

# CONTENTS

| Summary            | 2  |
|--------------------|----|
| Project Goals      | 2  |
| Map to Timeline    | 3  |
| Methods            | 3  |
| Summary of Results | 4  |
| Demographics       | 4  |
| Survey Responses   | 5  |
| Conclusion         | 12 |
|                    |    |

#### **SUMMARY**

The purpose of this summative report is to document the project outcomes in relation to the proposed goals. The Nanooze exhibit installation project achieved all four goals and continues to inform the public about nanotechnology in its installation at  $Epcot^{\circledR}$ . Surveys of visitors show acquisition of content related to the exhibits, as detailed in this summative report.

# PROJECT GOALS

The following table shows how each aspect of the project mapped to the goals outlined in the original proposal. As evidenced, all four project goals were met. Goal 1 and 2 were met through the high quality, interactive exhibits that are installed at *Epcot*®. Each exhibit is accessible to those with disabilities, those with language barriers, and non-readers. Signage features both English and Spanish translations. Goal 3 was met through several mechanisms. First, exhibits feature everyday objects (e.g., Zoom, RopeScope), and signage connects the everyday objects to the nanoscale through constructive use of images and simple text. Translations available in both English and Spanish increase accessibility. Scientists featured on signage and in video segments connect the audience to the 'real world' of scientists and those who advance nanotechnology as part of their work. Goal 4 was met through the interactive web site and the publication of 100,000 issues of Nanooze, the magazine.

| GOAL                                                                                                                                                                        | INDICATORS                                                             | PROJECT OUTCOMES                                                                                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| 1) Design and fabricate a 3,000 square foot exhibition on nanotechnology for post-atomic visitors that will have a long term presence in a theme park in the United States. | Exhibits constructed, refined, and installed <i>Epcot</i> ®            | Very high quality exhibit installed.                                                                                   |
| 2) Immerse post-atomic visitors in inquiry based nanotechnology experiences.                                                                                                | Interactive exhibits developed and fabricated.                         | All exhibit components installed and functional.                                                                       |
| 3) Provide visitors tangible connections between nanotechnology and their daily lives.                                                                                      | Inclusion of translation of nanotechnology into everyday applications. | Several exhibits make explicit the connection between lab research and everyday applications. Scientists are featured. |

| 4) Integrate and leverage a web site | Creation of web site;      | Web site is online |
|--------------------------------------|----------------------------|--------------------|
| and a print magazine under the same  | Publication of magazines;  | and interactive.   |
| name that will extend learning       | distribution of magazines. | 100,000 magazines  |
| beyond the venue.                    |                            | have been printed  |
|                                      |                            | and distributed.   |
|                                      |                            |                    |

#### MAP TO TIMELINE

The entire project is on track based on the timeline in the original proposal. Fabrication began within 30 days of the award and was completed within one year of project commencement. Evaluation was completed in step with this timeline, and the summative report was prepared in 2012.

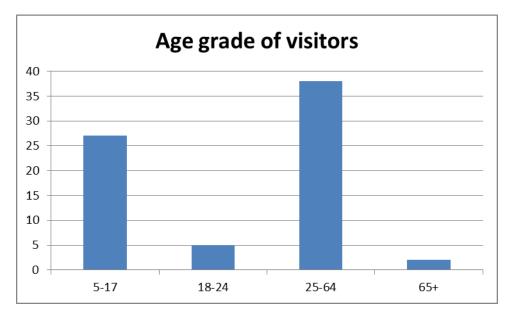
## **METHODS**

Formative data for this project was collected through previous NSF award 0426378. The current summative evaluation documented visitor learning outcomes during a site visit at *Epcot*®. During this two-day visit, 70 visitors were interviewed about their learning after interacting with the exhibits. The survey was administered after visitors had interacted with at least two exhibits and had a dwell time of five minutes or greater. The questionnaire was as follows:

| Gender  | :: M / F             | Age:                | 5-17        | 18-24      | 25-64 | 65+   |
|---------|----------------------|---------------------|-------------|------------|-------|-------|
| Race/et | thnicity: White Hi   | ispanic/Latino B    | lack/Africa | n American | Asian | Other |
| 1.      | What is the smalles  | t thing you can se  | e with just | your eyes? |       |       |
| 2.      | What is the smalles  | t thing you can th  | ink of?     |            |       |       |
| 3.      | What is this exhibit | about?              |             |            |       |       |
| 4.      | What do you think i  | nano means?         |             |            |       |       |
| 5.      | What are molecules   | s? What do they     | do?         |            |       |       |
| Ropesc  | оре                  |                     |             |            |       |       |
| 1.      | What are these too   | ls used for?        |             |            |       |       |
| 2.      | Why do scientists u  | se tools like this? |             |            |       |       |
| 3.      | Can you see nanom    | eter size objects v | with these  | tools? YES | NO    |       |
| Zoom    |                      |                     |             |            |       |       |
| 1.      | What are you seein   | g in this zoom?     |             |            |       |       |

2. How big are the objects?

#### **Touch a Molecule**


- 1. What are you doing with this molecule?
- 2. What is the molecule made of?
- 3. How do molecules move?

Visitors were approached and asked to participate in the survey. Parents/guardians of minors under 18 filled out parental consent forms prior to interviews with visitors of that age range. Nine people declined interview. All data was entered and analyzed via cluster analysis.

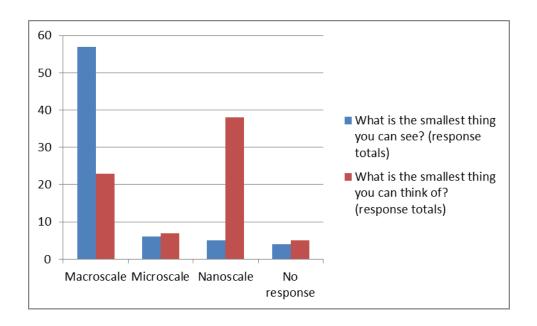
#### SUMMARY OF RESULTS

## **DEMOGRAPHICS**

The survey was implemented with 70 visitors. The demographic breakdown was as follows: 36 male, 34 female. Predominant audience was Caucasian (59), with 4 Hispanic/Latino(a), 4 Black/African-American, 2 Asian and 1 Other ethnic background. Age grade is represented in the following table.



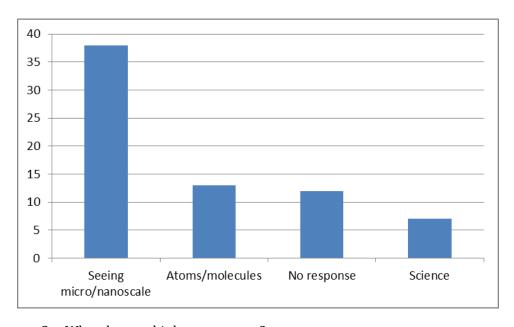
# **SURVEY RESPONSES**


#### COMMON QUESTIONS (ASKED OF ALL VISITORS)

Each question on the survey is represented below with the number of responses per category. Each of these is followed by a graphical representation of responses.

1. What is the smallest thing you can see with just your eyes? What is the smallest thing you can think of?

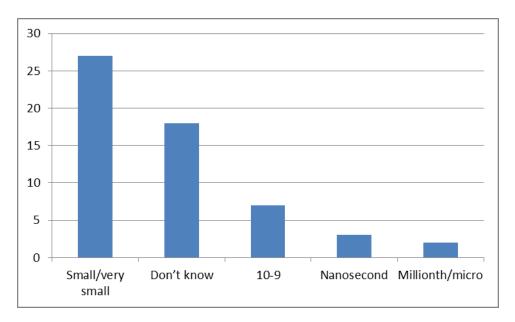
As seen in previous work, the smallest thing that people described being able to see was something macroscopic. The smallest thing respondents could think of was dominated by items at the nanoscale (38 responses), showing that the exhibit had an influence on responses.


| Scale       | What is the smallest thing you can see? (response totals) | What is the smallest thing you can think of? (response totals) |
|-------------|-----------------------------------------------------------|----------------------------------------------------------------|
| Macroscale  | 57                                                        | 23                                                             |
| Microscale  | 6                                                         | 7                                                              |
| Nanoscale   | 5                                                         | 38                                                             |
| No response | 4                                                         | 5                                                              |



#### 2. What is this exhibit about?

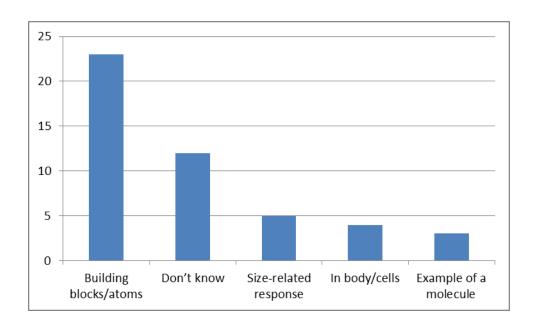
The majority of visitors felt the exhibit was about seeing things at the macro and nanoscales. Next most common responses were those related to atoms and molecules. An almost equivalent number of visitors had no response (see table below). Another group responded with the general term, "science".


| Seeing<br>micro/nanoscale | Atoms/molecules | No response | Science |
|---------------------------|-----------------|-------------|---------|
| 38                        | 13              | 12          | 7       |



# 3. What do you think nano means?

The majority of respondents thought nano meant "very small", while others simply did not know what nano means. Several visitors respondent with  $10^{-9}$ , showing that they had a functional knowledge of "nano". A small number of visitors mentioned nanosecond, or millionth/micro.


| Small/very small | Don't know | 10 <sup>-9</sup> | Nanosecond | Millionth/micro |
|------------------|------------|------------------|------------|-----------------|
| 27               | 18         | 7                | 3          | 2               |



# 4. What are molecules? What do they do?

The majority of visitors mentioned building blocks and atoms in their responses to this question. The next most common response was "don't know", but then others responded with an answer related to size, an answer referring to something in the body including cells, and examples of molecules.

| Building blocks/atoms | Don't know | Size-related response | In body/cells | Example of a molecule |
|-----------------------|------------|-----------------------|---------------|-----------------------|
| 23                    | 12         | 5                     | 4             | 3                     |



# **EXHIBIT-SPECIFIC QUESTIONS**

Not all respondents agreed to answer questions regarding specific exhibits. Specifically, 11 responded to questions about "RopeScope", 35 to questions about "Zoom", and 15 to questions about "Touch a Molecule." This data appears in the section below, sorted by exhibit.

#### ROPESCOPE

Each visitor who responded to questions about RopeScope answered three questions in series. This data is presented per individual below. All visitors responded with answers that included size, scale, or seeing things inside the body. No visitors thought that you could see nanometer sized objects with the RopeScope.

| Visitor | What are these tools used for? | Why do scientists use tools like this?            | Can you see nanometer sized objects with this tool? |
|---------|--------------------------------|---------------------------------------------------|-----------------------------------------------------|
| 1       | microscope                     | seeing cells                                      | No                                                  |
| 2       | magnification                  | to see things                                     | No                                                  |
| 3       | science                        | to look more into what they think they see        | No, if it was more powerful you could.              |
| 4       | looking at things              | to see small things                               | No                                                  |
| 5       | seeing the penny up close      | to see tiny things                                | No                                                  |
| 6       | seeing stuff close up          | to zoom in on things                              | No                                                  |
| 7       | seeing small things            | for magnifying glass                              | No                                                  |
| 8       | things you can't see           | so they're able to see smaller cells              | No, too small.                                      |
| 9       | I don't know                   | looking into stuff you can't see<br>like the body | No                                                  |
| 10      | microscopes                    | examine molecules                                 | No                                                  |
| 11      | microscopes                    | to look at cells, things inside the body          | No                                                  |

# ZOOM

The 37 responses to this set of two questions were highly variable. Most respondents indicated that they were seeing something up close and could identify the object(s). When asked how big the objects were, most visitors responded with "very small" or "nano". The next most common response was "I don't know".

| Visitor | What are you seeing in this zoom?   | How big are the objects?                                                          |
|---------|-------------------------------------|-----------------------------------------------------------------------------------|
| 1       | Shells                              |                                                                                   |
| 2       |                                     | atomic scale                                                                      |
| 3       | how detailed it is                  | very small                                                                        |
| 4       | dragonfly wing                      | big at first                                                                      |
| 5       |                                     | very small                                                                        |
| 6       | silicone; micro chips               | nano                                                                              |
| 7       | looking at a butterfly up close     | pretty big                                                                        |
| 8       | atoms                               | small as transistors in computer chips. I used to work at an electronics factory. |
| 9       | it zooms                            | pretty small                                                                      |
| 10      | butterfly parts close up            | big at first and then small                                                       |
| 11      | a butterfly and its beautiful wings | up close, they're really small                                                    |
| 12      | really close up stuff               | big and then you go closer                                                        |
| 13      | atoms at the end of it              | atom size                                                                         |
| 14      | objects close up                    |                                                                                   |
| 15      | butterfly and dragonfly             | I don't know.                                                                     |
| 16      | an insect wing                      | big at first, then small                                                          |
| 17      | insect                              | I don't know.                                                                     |
| 18      | stuff close up                      | I don't know.                                                                     |
| 19      | butterfly                           | some are nano                                                                     |

| 20 |                                        | nano                                       |
|----|----------------------------------------|--------------------------------------------|
| 21 | butterfly                              | I don't know.                              |
| 22 | dragonfly wing                         | all the way down, to atoms                 |
| 23 | butterfly                              | millions of times smaller                  |
| 24 |                                        | as big as the butterfly; but not that big  |
| 25 | a shell                                | big and small                              |
| 26 | electron microscope pictures           | small                                      |
| 27 | butterfly                              | really really small, maybe nano            |
| 28 | forces between atoms                   | they aren't objects                        |
| 29 | dragonfly parts down to really small   | really small                               |
| 30 | dragonfly                              | really small                               |
| 31 | zoom down to atoms                     |                                            |
| 32 | zooming in and out of different things | a lot more than you can see with your eyes |
| 33 | things close up and small              | big and then small                         |
| 34 | living things                          | really small                               |
| 35 | close up                               | small                                      |
| 36 | butterfly                              | nano?                                      |
| 37 | butterfly wings                        | yea, nano.                                 |

#### TOUCH A MOLECULE

Fifteen visitors responded to questions about Touch a Molecule. The most common response to "what are you doing with this molecule" involved motion. When asked what the molecule was made of, the most common response referred to atomic structure (e.g.,  $H_2O$ , oxygen, atoms). Responses to how molecules move were highly variable, but several answers described how different molecules move differently. Other responses related to the user-interface (e.g., when you press on the screen you move them).

| Visitor | What are you doing with this molecule?                               | What is the molecule made of?                                        | How do molecules move?                      |
|---------|----------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------|
| 1       | learning things                                                      | atoms                                                                |                                             |
| 2       | discovering what materials things are made of                        | H20, oxygen                                                          | frozen moves slower;<br>warmer moves faster |
| 3       | popping it                                                           | more hydrogen and oxygen;<br>would help to put that on the<br>screen | going down                                  |
| 4       | moving it                                                            | H20, oxygen                                                          | I don't know. Here, you touch them.         |
| 5       | looking at a molecule                                                | H20                                                                  | stick together                              |
| 6       | spinning                                                             | hydrogen and oxygen                                                  | move slowly                                 |
| 7       | moving it to see different parts                                     | H20                                                                  | when you press on the screen you move them  |
| 8       | I like the H20; here is the hydrogen and oxygen (pointed).           | Hydrogen and Oxygen                                                  | different; each one is different            |
| 9       | moving it                                                            |                                                                      | all molecules move differently              |
| 10      | smallness of molecules and<br>how many it takes to make up a<br>item |                                                                      | each is different                           |
| 11      | It's a lot of info (ESL)                                             |                                                                      |                                             |
| 12      | silicone, hemoglobinmoving<br>them                                   | atoms                                                                |                                             |
| 13      | moving it                                                            | water                                                                | slowly                                      |
| 14      | silicone; I don't know.                                              | sand?                                                                | I don't know.                               |
| 15      | reading the signsI didn't do it.                                     | water; silicone                                                      | I don't know.                               |

# CONCLUSION

The Nanooze exhibit met its goals, reaching millions of visitors at Epcot<sup>®</sup>. Dissemination materials have made an impact with at least 100,000 people in addition to 100,000 web site hits. Visitor responses to questions asked on site when the exhibit opened indicated an acquisition of content related to the exhibit. The PI of the project also has secured funding for additional installation at the Disneyland<sup>®</sup> Park in California. The impact of this project will continue as additional visitors at Epcot<sup>®</sup> interact with the exhibits.