Overview

Research	Evaluation		
Produces generalizable Knowledge	Judges merit or worth		
Scientific inquiry based on intellectual curiosity	Policy & program interests of stakeholders paramount Advances broad knowledge and theory		
Advances broad knowledge and theory			
Controlled setting	Conducted within setting of changing actors, priorities, resources, & timelines		

Blome, J.M. (2009). Office of Program Analysis and Evaluation, National Institute of General Medical Sciences.

Research in the Learning Sciences

- Learning Across Time and Space Learning Ecologies
- Social Facilitation & Apprenticeships Communities of Practice
- Interest & Motivation as Drivers of Learning
- Science Identity Formation
- Use of Designed Spaces & Problem Based Learning
- Digital Media & Gaming

Science learning is cumulative, public uses a diversity of science learning resources to build understanding.

Most people learn most of the science they know outside of school.

	R ²	X ² -value	p-value
Formal Education Model	0.17	133.08	< .001
Childhood Free-Choice Learn. Model	0.17	122.61	< .001
Workplace Model	0.20	152.61	< .001
Privilege Model	0.23	152.95	< .001
Adult Free-Choice Learning Model	0.39	323.95	< .001

Overall Model: $R^2 = 0.51$, $X^2 = 369.43$, p < .001 Falk & Needham (2013)

Informal programs typically incorporate 6 learning strategies shown to support effective

- Build on Learner Interests
- Hands-On
- Inquiry/Problem-Based
- Connect STEM to Everyday Life and Experiences
- Knowledgeable Mentors
- Collaborative, Encourage
 Peer-to-Peer Interactions

National Research Council (2009). *Learning Science in Informal Environments*Washington, DC: The National Academies Press.

Some Possible Broader Impacts Learning Research Questions

- How do informal education experiences influence undergraduate and graduate students' career trajectories?
- How does participation in citizen science efforts influence the STEM research enterprise?
- What would make a broader public more attentive to STEM research messages in the media and why?

From **Impact Evaluation** to Broader **Impacts**

Friedman, A. (Ed.). (March 12, 2008). Framework for Evaluating Impacts of Informal Science Education Projects [On-line]. (Available at: http://insci.org/resources/Eval Framework.pdf)

Some Possible Broader Impacts Evaluation Questions

- What ISE impacts do Centers and large facilities have in common and what methods are being used to measure those impacts?
- Can common measures used within Centers and large facilities provide new learning about what works, for whom, and in what contexts?

