ROBERT H. TAI, ED. D. UNIVERSITY OF VIRGINIA

Finding FOCIS:

A Framework for

Examining Lessons and Learning Activities

Virginia Science Coordinators Meeting
 Blandy Experimental Farm
 Boyce, VA
 May 19, 2014

Generating Interest among Students

An analysis of longitudinal data for $3300+$ students spanning 12 years from ages $14-26$ suggests that $8^{\text {th }}$ graders with an interest in science are 2-3 more likely to earn degrees in STEM-related disciplines than those who do not report a similar early interest.

Tai, R. H., Liu, C. Q., Maltese, A. V., \& Fan, X. (2006). Planning early for careers in science. Science. 312, 1143 - 1144. doi: $10.1126 /$ science. 1128690

Nonscience Expecters

15 Mathematics achievement score

When do scientists and graduate students say they first became interested "science"?
 (Scientist n=3220; Grad students n=1065)

70% of scientists and 69% of graduate students reported developing their interest in science in Grades K-8
24% of both scientists and graduate students in Grades 9-12
6% of scientists and 7% of graduate students in College

[^0]
When do scientists and graduate students say they first became interested their career discipline?

(Scientist $\mathrm{n}=3220$; Grad students $\mathrm{n}=1065$)
29% of scientists and 23% of graduate students reported developing their interest in chemistry/physics in Grades K-8
52% of scientists and 56% of graduate students in Grades 9-12
18% of scientists and 21% of graduate students in College

How do we hope to engage children's interest?

Through learning activities in both formal and informal settings.

An examination of curriculum and programs led to the development of a Framework for Observing and Categorizing Instructional Strategies (FOCIS) which is a LEARNING ACTIVITY typology.

| Learning Activity |
| :--- | :--- |
| Type |\quad| Survey Questions |
| :--- | | When I find out that an activity involves... Discovering and learning new things. |
| :--- |
| I like figuring out how things work. |
| I like taking things apart to see what is inside. |
| I like trying different ways to figure things out. |
| I like solving problems. |

Example: "Discovering" Questions

16 We want to know how you feel about different activities. (Please mark only 1 box for each activity listed below.)

When I find out that	I feel...				
an activity involves...	1		2	3	4
a. Being in a group,	\square	\square	\square	\square	\square
b. Being in a competition,	\square	\square	\square	\square	\square
c. Making or building things,	\square	\square	\square	\square	\square
d. Discovering and learning new things,	\square	\square	\square	\square	\square
e. Presenting in front of lots					
of people,					
f. Taking care of animals,	\square	\square	\square	\square	\square
g. Helping people learn things,	\square	\square	\square	\square	\square

18 We want to know what you think about each of the statements below. If you strongly agree, then choose 5. If you strongly disagree, then choose 1. (Please select only 1 number for each statement below.)

Data Set

- Large-scale survey of all students in Grades 3-12 in schools from 4 Public School Districts.
- Urban, Suburban, and Rural
- Participating public school districts have strong enrollment numbers of students from minorities groups under represented in STEM (Black 20.9\%; Latino/a 23.0\%)
- Overall study enrollment $(\mathrm{N}=7157)$
- Elementary School - Grades 3-5 $(\mathrm{n}=2486)$
- Middle School - Grades 6-8 $(n=2502)$
- High School - Grades 9-12 $(n=2169)$
- Female 50.9\%; Male 49.1\%

[^1]1 Are you a girl or boy?
\square Girl
\square Boy
2 Is English the language you usually speak at

```
We want to know if you have attended science or math programs outside of school time. (Mark all that apply.)
```

6 Did you ever attend a camp or a program that

Grade
Males

Females

Grade

Males

Collaborating

Females

Males

Females

Performing

Males

Females

Caretaking

Research Question

Are youth who have preferences for particular types of learning activities more likely to select STEM-related career choices than youth who have different preferences (accounting for demographic characteristics)?

Logistic Regression Analysis
 STEM-related Job $=[0,1]$ Dichotomous Outcome Variable (All 21 LR Models include Demographic Background Controls for Gender and Race/Ethnicity)

Comparison of Odds Ratios from Seven Logistic Regression Models of Learning Activity Composite Variables (Each LR model included baseline demographic control variables, gender and race/ethnicity)			
Learning Activity	Grade Level		
Composite Variable	Elementary	Middle	High
Discover ${ }^{\text {a }}$	1.38**	1.99***	1.74***
Make ${ }^{\text {a }}$	1.27*	1.60***	1.35***
Collaborate_REVERSE ${ }^{\text {ab }}$	1.31 ***	1.30 ***	1.28***
Compete ${ }^{\text {a }}$	0.92	1.04	0.93
Present ${ }^{\text {a }}$	1.10	1.16**	0.95
Caretake ${ }^{\text {a }}$	0.99	1.03	1.03
Teach ${ }^{\text {a }}$	0.93	1.00	1.06
${ }^{\text {a }}$ All odds ratios reported above are based on LR models which include demographic background variables for gender and race/ethnicity. ${ }^{\mathrm{b}}$ Collaborate_REVERSE is the reverse coded composite variable for the composite variable Collaborate, where a 5 score has been recoded to a 1 score, and vice versa. This status implies that youth with lower scores have greater odds of choosing STEM Jobs, than youth with higher scores. ${ }^{*} p<0.05,{ }^{* *} \mathrm{p}<0.01,{ }^{* * *} \mathrm{p}<0.001$			

Comparison of Prototypical Elementary School Students

Learning Activity	Neutral (3/5) vs Positive (4 /5)	Neutral (3 / 5) vs Highly Positive (5 / 5)
Discover	38% greater odds	90% greater odds
Make	27% greater odds	61% greater odds

Comparison of Prototypical Students

Comparison of Prototypical Middle School Students

Learning Activity	Neutral (3 / 5) vs Positive (4/5)	Neutral (3 / 5) vs Highly Positive (5 / 5)
Discover	99% greater odds	296% greater odds
Make	60% greater odds	156% greater odds

Comparison of Prototypical High School Students

Learning Activity	Neutral (3/5) vs Positive (4/5)	Neutral (3 / 5) vs Highly Positive (5 /5)
Discover	74% greater odds	203% greater odds
Make	35% greater odds	82% greater odds

Gender Differences?

With respect to aspirations for a STEM-related career, what gender differences exist among youth across elementary, middle, and high school?

Investigating Gender Differences Across Grade Ranges

Frequency Distribution

Grade Level	Gender			
	Male		Female	
	n	Percent	n	Percent
Elementary	1265	51.0	1215	49.0
Middle	1306	52.4	1186	47.6
High	1043	48.4	1110	51.6

Logistic Regression Analysis

STEM-related Job $=[0,1]$ Dichotomous Outcome Variable (All 3 LR Models include Demographic Background Controls for Race/Ethnicity)

Grade Level		Odds Ratio
Elementary		$3.0^{* * *}$
Middle		$4.3^{* * *}$
High	$4.1^{* * *}$	

These results suggest that among Elementary School children, a prototypical MALE has 3.0 times greater odds of choosing a STEM-related career than a prototypical FEMALE.

Among Middle School children, MALES have 4.3 times greater odds than FEMALES of choosing a STEM-related career.

Among High School children, MALES have 4.1 times greater odds than FEMALES of choosing a STEM-related career.

Elements and Characteristics
What elements characterize each of these types of learning activities?

Degrees of Intensity
What is the LOWEST level (non-inclusion) for each activity? What is the HIGHEST level for each activity?

We gratefully acknowledge the support of these organizations

S. D. BECHTEL,JR.
FOUNDATION

STEPHEN BECHTEL FUND

All views expressed are those of the researchers and do not represent the views of the National Science Foundation, the Robert N. Noyce Foundation, or the S. D. Bechtel, Jr. Foundation

The work presented here was based on the efforts of Xaioqing Kong, John T. Almarode, Katherine P. Dabney, Devasmita Chakraverty, and Nathan Dolenc.

I gratefully acknowledge their contributions

Thank you

Robert H. Tai, Ed.D. rht6h@virginia.edu

SUPPLEMENTARY SLIDES

Principal Component Analysis extracted a single component from the five "Discovering"-related questions.

Created a composite variable equal to the average value of the five original survey questions to create a composite variable named "Discover" which has a value that varies between [1 to 5] and is treated as continuous in this analysis.

The same process was carried out for the other six types of learning activities.

[^0]: *Data from Project Crossover (NSF REC 0440002), Pl R. H. Tai, University of Virginia

[^1]: We want to know a few things about you. (Please write or mark your answers in the boxes like this: Examples: 区 or 圈

