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Abstract. Visitor engagement is critical to the effectiveness of informal learning 
environments. However, measuring visitor engagement raises significant 
challenges. Recent advances in multimodal learning analytics show significant 
promise for addressing these challenges by combining multi-channel data 
streams from fully-instrumented exhibit spaces with multimodal machine 
learning techniques to model patterns in visitor experience data. We describe 
initial work on the creation of a multimodal learning analytics framework for 
investigating visitor engagement with a game-based interactive surface exhibit 
for science museums called FUTURE WORLDS. The multimodal visitor analytics 
framework involves the collection of multichannel data streams, including facial 
expression, eye gaze, posture, gesture, speech, dwell time, and interaction trace 
log data, combined with traditional visitor study measures, such as surveys and 
field observations, to triangulate expressions of cognitive, affective, behavioral, 
and social engagement during museum-based learning. These data streams will 
be analyzed using machine learning techniques, with a focus on deep recurrent 
neural networks, to train and evaluate computational models of engagement using 
non-intrusive data sources as input (e.g., interaction logs, non-identifying motion 
tracking data). We describe distinctive opportunities and challenges inherent in 
using multimodal analytics within informal settings, as well as directions for 
utilizing multimodal visitor analytics to inform work by exhibit designers and 
museum educators. 

Keywords: Multimodal Learning Analytics, Informal Learning Environments, 
Interactive Tabletop Exhibits, Game-Based Learning. 

1 Introduction 

Engagement is the cornerstone of learning in informal environments [1]. During free-
choice learning, such as in museums and science centers, visitor engagement shapes 
how learners interact with exhibits, move around the exhibit space, and form attitudes, 
interests, and understanding of science. In recent years, the space of possibilities for 
visitor engagement has been enriched by the growing presence of advanced learning 
technologies within museums, including digital games, tangible devices, and 
augmented reality. Engagement with these technologies can be operationalized in many 
different ways, and research in the area spans a broad range of fields and theoretical 
perspectives [2]. Disentangling visitor engagement from related constructs, such as 
motivation, flow, interest, and self-regulation, is a common challenge. Engagement has 



 

also proven difficult to measure [2]. Much of the research on learner engagement has 
depended upon the use of subjective measures, such as self-reports, questionnaires, and 
interviews. These measures provide a snapshot view of visitor engagement, but they 
provide limited data for modeling visitor engagement at the process level. 
Observational methods have also been utilized, but they raise issues of scalability, as 
well as potential disruptive effects inherent in video recording, audio recording, and 
even written consent itself [3]. 

Recent developments in multimodal learning analytics show particular promise for 
addressing these challenges. Learning analytic techniques enable the creation of 
computational models for inferring complex relationships between variables, which can 
be utilized to detect the presence of engagement-related phenomena from non-
identifying data, such as trace logs of learner behavior [4]. Multimodal learning 
analytics expands upon these methods by using multiple physical hardware sensors to 
concurrently capture multi-channel data on learner behavior and modeling salient 
patterns of learner experience using machine learning [5, 6]. Multimodal learning 
analytics has shown significant promise in laboratory and classroom environments [7, 
8], but there has been comparatively little work investigating multimodal learning 
analytics in informal contexts, such as science museums. 

In this paper, we describe work on the design and development of a data-driven 
framework for investigating visitor engagement in science museums using multimodal 
learning analytics (Figure 1). We focus on visitor interactions with a game-based 
interactive surface exhibit about environmental sustainability called FUTURE WORLDS. 
By instrumenting FUTURE WORLDS with multiple hardware sensors, it is possible to 
capture fine-grained data on visitors’ facial expression, eye gaze, posture, gesture, 
conversation, dwell time, and learning interactions to triangulate key components of 
visitors’ cognitive, affective, behavioral, and social engagement during free-choice 
learning. We use these data streams to train and evaluate multimodal machine learning 
models to infer visitors’ engagement levels with non-intrusive data sources as input 
(e.g., interaction logs, non-identifying motion tracking data). We describe recent 
progress on the development of the multimodal visitor analytics framework, and discuss 
distinctive opportunities and challenges inherent in using this approach to devise 
computational models of visitor engagement. 

2 Background and Related Work 

Learner Engagement. We adopt a conceptualization of engagement that is organized 
in terms of several core components: cognitive engagement, emotional engagement, 
behavioral engagement, and social engagement [9, 10]. Cognitive engagement 
describes individuals’ psychological investment in learning, which has close ties to 
motivation and interest as well as self-regulated learning [9]. Emotional engagement 
refers to individuals’ affective responses to learning, including attitudes, mood, and 
moment-to-moment emotional expressions, such as engaged concentration, delight, 
confusion, and surprise. Behavioral engagement refers to learners’ positive, on-task, 
and productive learning behaviors. In a museum context, low levels of engagement may 
appear as passive or shallow interactions with an interactive exhibit, whereas high-level 
behavioral engagement can manifest as productive exploration behaviors, as well as 



 

expressions of interest that extend outside of the exhibit (e.g., prompting a friend to try 
the interactive tabletop display). Social engagement acknowledges the key role of social 
interactions during learning in small groups, a common context in museums and other 
informal environments [10]. Adopting this conceptualization, we seek to utilize rich 
multi-channel data streams to identify salient patterns of meaningful visitor engagement 
that integrate cognitive, affective, behavioral, and social measures.  

Multimodal learning analytics. Advances in multimodal learning analytics have been 
enabled by the increased availability of low-cost physical sensors (e.g., motion-tracking 
cameras, eye trackers) combined with significant progress in machine learning tools 
and techniques. By taking advantage of information across concurrent sensor-based 
data channels, multimodal learning analytic techniques have been found, in many cases, 
to yield improved models compared to unimodal techniques [11]. This extends to a 
range of tasks within educational technologies, including automated detection of 
affective states [7, 12], computational models of assessment [13], and models of learner 
metacognition [14]. Although these applications have shown significant promise, the 
preponderance of work on multimodal learning analytics has been conducted in 
laboratory and classroom settings. Using multimodal learning analytics to investigate 
visitor engagement in informal environments is a natural next step for the field. 

3 FUTURE WORLDS Testbed Exhibit 

To conduct data-rich investigations of visitor engagement in science museums, we 
utilize a game-based museum exhibit called FUTURE WORLDS. Developed with the 
Unity game engine, FUTURE WORLDS integrates game-based learning technologies and 
interactive surface displays to enable collaborative explorations of environmental 
sustainability in science museums [15]. In FUTURE WORLDS, visitors solve 
sustainability problems by investigating the impacts of alternate environmental 
decisions on a 3D simulated environment (Figure 2). The virtual environment is 
rendered from a top-down perspective on a 28” interactive surface display, a Microsoft 
Surface Studio 2. Learners tap and swipe to test hypotheses about how different micro- 

Figure 1. Multimodal visitor analytics framework. 



 

and macro-scale environmental decisions—such as modifying a region’s electricity 
portfolio or augmenting a farm’s waste management practices—impact the 
environment’s sustainability and future health. The effects of visitors’ environmental 
decisions are realized in real-time with 3D game engine technologies.  

FUTURE WORLDS’ focus on environmental sustainability targets three major 
themes—water, energy (both renewable and non-renewable), and food—and it 
facilitates exploration of the interrelatedness of these themes. Initial pilot testing with 
both school and summer-camp groups at our partner museum, the North Carolina 
Museum of Natural Sciences, have indicated that learners’ interactions with FUTURE 
WORLDS enhance sustainability content knowledge, as well as yield promising levels 
of collaboration and engagement as indicated by observations of learner behavior [15]. 

4 Multimodal Visitor Analytics Framework 

We are investigating the use of a suite of multimodal sensors (e.g., webcam, motion-
tracking camera, eye tracker, directional microphone, game logs) to capture visitors’ 
facial expression, body movement, eye gaze, speech, and interaction trace data, 
respectively, to serve as complementary data sources for inducing computational 
models of visitor engagement with FUTURE WORLDS (Figure 3). Integration of 
hardware sensors with the Unity game engine is implemented with a client-server 
architecture, enabling multimodal data capture to be conducted on a separate thread 
from the main game logic for FUTURE WORLDS. This modular design supports 
extensibility, enabling the addition of alternate hardware sensors and exhibit software 
applications in the future. In addition to collecting multimodal sensor data, we utilize 
visitor self-reports (e.g., questionnaire data) and observational methods to obtain 
“ground-truth” labels of visitor engagement. These serve as the raw data for creating 
engagement labels, which operationalize expressions of visitors’ cognitive, affective, 
behavioral, and social engagement for use in supervised machine learning. 

4.1  Multimodal Data Channels 

Facial expression. Facial expression provides a rich window into learner emotion and 
engagement [16]. Facial action unit data has been found to provide an effective input 
for recognizing learning-centered affective states [7]. In our work, we capture facial 
expression data using video recordings from an externally mounted Logitech C920 
USB webcam. The resulting data is analyzed using OpenFace, an open-source facial 
behavior analysis toolkit that provides automated facial landmark detection, facial 

Figure 2. Screenshots from FUTURE WORLDS game-based museum exhibit. 



 

action unit recognition, and eye gaze tracking functionalities [17]. OpenFace supports 
both real-time tracking and post-interaction analysis of facial expression, and it offers 
opportunities to train facial feature recognition models based on developers’ needs. 

OpenFace is built as a native C++ library, which is integrated with our multimodal 
visitor analytics server. OpenFace has demonstrated efficient run-time performance on 
Microsoft Surface Studio 2 hardware, tracking facial movements at approximately 30 
frames per second. It also provides visualization tools for inspecting the quality of head 
pose and eye gaze estimation functionalities. In its initial implementation, the 
OpenFace integration is configured for tracking facial landmark coordinates, a single 
user at a time, and external webcam support, although support for multiple users is 
planned. Multi-face tracking comes at the expense of reduced reliability at tracking 
facial action units. Therefore, we plan to conduct initial studies with the single-user 
model and transition toward studies with multiple simultaneous visitors as the project 
progresses. Tracking which data belongs to which person is an engineering challenge 
that will be important to address as the project transitions toward more naturalistic 
studies in the museum with fluid grouping of visitors.  

Eye gaze. Gaze provides rich, task-based information that can significantly contribute 
toward modeling users’ cognitive and affective states [18]. A growing body of 
empirical work has demonstrated the importance of eye gaze for modeling learner 
interactions [19]. To track visitor eye gaze, we utilize a mounted eye-tracking sensor, 
the Tobii EyeX eye tracker, which uses near-infrared light to track eye movements and 
gaze points during user interactions with game environments [20]. This data is 
complementary to eye gaze estimation data generated by the OpenFace facial behavior 
analysis toolkit. We automatically identify in-game targets of user attention in FUTURE 
WORLDS using a gaze target-labeling module that processes eye tracking data using ray 
casting techniques in Unity. Using this module, it is possible to automatically track 
visitors’ visual fixations on in-game objects and interface elements, yielding log events 
that contain the name of the target game object, as well as the timestamp and duration 
of the fixation. 

Figure 3. Child exploring an early prototype of the FUTURE WORLDS 
exhibit instrumented with multimodal sensors. 



 

Posture and Gesture. Recent years have seen growing interest in research on affective 
modeling using human body movement data [12, 21]. To capture data on visitor posture 
and gesture, we utilize Microsoft Kinect for Windows v2, a dedicated motion sensing 
camera that provides skeletal tracking for pose and gesture detection, as well as raw 
pixel data for depth and color camera sensors [22]. Currently, the software tracks 
visitors’ pose through the use of skeletal joint orientations at a maximum rate of 30 Hz. 
The Kinect software can differentiate up to 6 people at a time, and it tracks 26 individual 
joints per person. The Kinect sensor is typically mounted on a tripod several feet away 
from the interactive surface exhibit, and it allows for tracking of pointing gestures and 
shifts in posture that characterize different behavioral signatures of visitor engagement. 

Conversation. Visitor conversation is a critical form of engagement with museum 
exhibits. Several computational techniques have emerged to investigate speech data for 
affect and engagement prediction [23]. We consider two approaches: (1) investigating 
transcribed conversations between visitors based on automatic speech recognition 
(ASR) or manually generated transcriptions, and (2) utilizing acoustic feature 
extraction from speech data. Prominent ASR methods include hidden Markov models, 
Gaussian mixture models, and deep neural networks [24]. Acoustic feature extraction 
(e.g., spectral features, prosodic features) is supported by signal processing techniques, 
including Fourier transform and autocorrelation functions. We investigate open-source 
toolkits for speech analysis that are publicly available, such as Kaldi [25] for ASR and 
OpenSMILE [26] for acoustic feature extraction.   

Telemetry (interaction trace logs). FUTURE WORLDS provides support for telemetry, 
or the generation of detailed logs of learner interactions with the digital interactive 
exhibit software. The log data consists of timestamped records (at the millisecond level) 
of visitor taps and multitouch gestures, as well as learning events and simulation states, 
that arise during visitor experiences. Telemetry data can be utilized to investigate how 
learners explore and manipulate the underlying environmental simulation provided by 
FUTURE WORLDS. Log data collected from visitors’ learning interactions will be aligned 
with other data streams and analyzed. Emergent interaction patterns will be examined 
and coded as measures to provide insight into the dynamics of the visitor experience. 

Questionnaires (self-report). We utilize several questionnaires to capture pre and post 
data on visitors’ science content knowledge, interest, and engagement related to the 
FUTURE WORLDS exhibit. To examine visitor learning outcomes we will collect pre- 
and post assessment data using personal meaning maps and an environmental 
sustainability identification task. Personal meaning maps (PMMs) consist of a blank 
piece of paper with a brief set of instructions and a prompt phrase: sustainability. 
Participants use a pen to write or draw words, phrases, and pictures about their 
conceptualizations of the prompt phrase. The environmental sustainability 
identification task involves learners inspecting an illustrated picture of an environment 
depicting both sustainable and unsustainable environmental practices and annotating 
the picture by circling good practices and crossing out bad practices. 

To gather data on visitors’ interest in natural science, we utilize the Fascination in 
Science scale, an 8-item questionnaire designed for use by 10–14 year olds [27]. We 
also utilize the Engagement in Science Learning Activities Questionnaire [28] and a 
modified version of the Perceived Interest Questionnaire [29] to gather retrospective 



 

self-reports from visitors about their engagement and interest in the FUTURE WORLDS 
exhibit, respectively. 

Field observation methods. We utilize field observation methods to systematically 
collect observational data on visitors’ affective states and exhibited behaviors during 
interactions with FUTURE WORLDS. Observation methods include (1) the Simplified 
Engagement Observation Protocol, and (2) the Baker Rodrigo Ocumpaugh Monitoring 
Protocol (BROMP) quantitative observational protocol. The Simplified Engagement 
Observation Protocol [28] is designed to score an individual’s engagement in a science 
learning experience. It records observer impressions of cognitive, affective, and 
behavioral engagement of predetermined participants, and it can be used with learners 
of any age. Observations focus on a single participant during a fixed time period, and 
they are recorded on paper via Likert scale. In BROMP, a trained field observer walks 
around the perimeter of a study area as participants engage in a learning activity, and 
the field observer discreetly records holistic observations of participants’ physical 
displays of emotion in a round robin sequence [30]. Field observers use a hand-held 
Android device running the HART field observation software, which enables the 
researcher to generate real-time timestamped codes of visitors’ emotional states that 
most closely correspond to the participant’s displayed affect at that time. Emotional 
states are coded in terms of discrete categories, such as engaged concentration, delight, 
confusion, boredom, surprise, and frustration. 

4.2  Deep Recurrent Network-Based Data Fusion 

There are a broad range of well-established machine learning techniques that have been 
widely used in the learning analytics community. These include supervised learning 
algorithms (e.g., J48 decision trees, random forests, support vector machines, logistic 
regression), unsupervised learning techniques (e.g., k-means clustering, expectation-
maximization), and methods that can account for the sequential nature of visitors’ 
learning interactions, such as hidden Markov models and dynamic Bayesian networks. 
Many of these techniques have tradeoffs among one another, and the choice of machine 
learning technique often depends upon the relevant task and dataset. 

In recent years, deep neural network-based methods have shown particular promise 
in multimodal machine learning applications [11]. To induce multimodal machine 
learning models of visitor engagement, we are investigating two fusion method-based 
long short-term memory recurrent neural network architectures (LSTMs): an early 
fusion-based LSTM model and a late fusion-based LSTM model. LSTMs are a variant 
of recurrent neural networks that are specifically designed for sequence labeling [31]. 
LSTMs have achieved high predictive performance in various sequence labeling tasks, 
often outperforming standard recurrent neural networks by preserving a long-term 
memory and effectively addressing the vanishing gradient problem [32]. 

Figure 4A shows an early fusion-based LSTM model in which joint information 
across all modalities per time step is represented in a shared representation space and 
is used as input for the model to predict visitor engagement. For early fusion-based 
LSTMs, it is important to conduct an explicit alignment of multi-channel data streams 
so that data from different modalities is appropriately synchronized. Figure 4B shows 
a late fusion-based engagement model, in which each modality is managed by a 



 

separate LSTM, and the resulting modality-based models’ outputs are concatenated into 
a summary representation, which is used to infer visitor engagement levels. For both 
data fusion methods, non-sequential data (e.g., self-reported traits, such as gender and 
age, or attitudes, such as science interest) are treated separately; they are directly linked 
to the output layer of the multimodal learning analytics model. 

It is notable that a fusion-method LSTM framework is scalable, in principle, from 
individuals to groups of visitors. One approach is to stack individual visitors’ models, 
as illustrated in Figures 4A and 4B, such that the output layers of individual visitor 
models serve as intermediate layers to infer group-level engagement in a late-fusion 
manner. Alternatively, in cases where sub-groups are fluidly formed during visitor 
interactions with FUTURE WORLDS, individual visitor models associated with each sub-
group can be stacked together to account for sub-group formations, and then the sub-
group models can be hierarchically configured to compose a full-group model.  

 

 
 

Figure 4. Data fusion-based LSTM recurrent neural network architectures:  
(A) Early fusion-based LSTM and (B) Late fusion-based LSTM. 

5 Opportunities and Challenges 

A significant opportunity afforded by applying multimodal learning analytics to 
investigate visitor engagement in science museums is to inform the best practices of 
exhibit designers and museum educators, as well as inform the design of practitioner-



 

focused learning analytic tools. For example, multimodal visitor analytics could be 
utilized to yield models that provide real-time analytics to inform how museum 
educators are allocated across an exhibition space to enhance high-quality visitor 
engagement on a busy day. These analytics could reveal to what extent meaningful 
engagement occurs when the museum is crowded, or at different times of the day, as 
well as the dynamics of visitor engagement in the presence or absence of large school 
groups. Multimodal analytics for visitor engagement also hold promise for informing 
iterative cycles of design and development by exhibit designers. 

Despite significant promise, research on multimodal visitor analytics also raises 
challenges that merit attention. First, there are a range of open questions in multimodal 
machine learning about how to best address challenges centered around data 
representation, data alignment, data fusion, and co-learning [11]. Data representation is 
a challenge about how to encode multi-channel data streams in a machine-interpretable 
vector space, effectively representing, summarizing, and exploiting complementary 
information provided by heterogeneous modalities. Data alignment involves 
identifying dependencies between different modalities. For example, a visitor’s gesture 
or facial expression may have been caused by another visitor’s previous utterance or 
behavior; it is important to identify relations between events captured across different 
modalities. Finally, data fusion and co-learning address questions about how to join 
information from multiple modalities into a single predictive model, how to leverage 
the predictive capacity given by each modality, and how to deal with different levels of 
noise occurring across different modalities. Addressing these challenges will be critical 
for devising accurate and reliable multimodal learning analytic models of visitor 
engagement.  

A second challenge is gracefully handling the different kinds of noise (e.g., missing 
data, incorrect data) that naturally arise in many sensor-intensive data collections. A 
range of computational methods have been devised to handle missing data, including 
EM imputation, temporal belief-based imputation, and multiple imputation [33]. We 
will investigate these techniques in connection to missing data issues in our own work 
on multimodal learning analytics. Devising best practices for the positioning, 
configuration, and calibration of physical hardware sensors in museum spaces are also 
likely to be necessary. For example, in eye tracking, the position and the angle of the 
eye tracker, the operating distance between the visitor’s eyes and the eye tracker, and 
the nature of nearby light sources all may need adjustment to ensure high-quality eye 
tracking. Depending on the visitor population, it can be important for sensors to support 
easy mounting and position adjustments to fit individual visitors. Recommended Tobii 
EyeX operating distance between a user’s eye and the device is between 450mm and 
800mm (Gibaldi et al., 2017), and researchers should ensure that the operating distance 
is properly managed. Lastly, since Tobii EyeX uses infrared light, too much light or 
direct sun light source should be taken into account to avoid negative impacts on eye 
tracking accuracy. 

A third challenge, which has begun to receive growing attention in recent years, is 
related to artificial intelligence (AI) ethics, including the risk of encoding implicit bias 
within machine learning-based models of visitor experience [34]. In general, machine 
learning models reflect the data that they have been trained on; if systematic biases exist 
in the training data, then similar biases are likely to arise in the machine learning 
models, too. This points toward the importance of recruiting diverse groups of visitors 



 

to participate in studies that yield datasets for training and evaluating machine learning 
models, as well as utilizing coding schemes and measures that are culturally sensitive; 
prioritizing sensitivity to cultural and demographic differences between visitors is 
important to avoid miscategorizing or neglecting different expressions of engagement. 
A related challenge is preservation of learner privacy. Collecting, managing, storing, 
and modeling multimodal data from museum visitors in a manner that respects 
individuals’ privacy will be essential if multimodal visitor analytics is to eventually 
transition from research to practice. 

6 Conclusion 

Multimodal visitor analytics offers significant potential to enrich our understanding of 
visitor engagement during free-choice learning in informal environments. By utilizing 
learning analytics to recognize patterns within and between dimensions of visitor 
engagement that are reflected across vast amounts of multimodal data, we aim to devise 
a rich empirical account of meaningful visitor engagement among individual visitors 
and small groups, as well as uncover broader tidal patterns in visitor engagement that 
unfold across the exhibit space. We are utilizing a suite of multimodal sensors, 
including eye trackers, motion-tracking cameras, webcams, microphones, and 
interaction trace logs, as well as traditional visitor studies measures such as 
questionnaires and observational protocols, to construct a data-rich account of visitors’ 
cognitive, affective, behavioral, and social engagement during museum studies 
conducted with the FUTURE WORLDS game-based museum exhibit. The resulting 
datasets will serve as the raw input to multimodal machine learning and educational 
data mining techniques, and in particular data fusion-based LSTM recurrent neural 
networks, to induce models for classifying visitor engagement levels from concurrent 
complementary data streams. 
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